English | MP4 | AVC 1280×720 | AAC 44KHz 2ch | 114 Lessons (9h 18m) | 6.84 GB
Launch your career as a Python Developer. Learn in-demand Python skills and become a job-ready developer in less than 4 months. No degree or experience required.
What you’ll learn
- Gain a strong foundation in Python syntax, data structures, and control flow, enabling you to write clean and efficient code.
- Use powerful libraries like pandas and Matplotlib to extract insights from data and create compelling visualizations.
- Develop skills in scripting and automation to streamline workflows, manipulate data, interact with APIs, and increase efficiency.
- Explore web development using Flask, learning to create dynamic applications, interact with databases, and build RESTful APIs.
Skills you’ll gain
- Python (Programming Language)
- Automation
- Web Development
- Data Analysis
- Cloud Computing
- Scripting
- Productivity
- API Interaction
- Flask Framework
- Collaboration
- Security Best Practices
- API Development
- Data Visualization
- Data Interpretation
- Data Manipulation
- Machine Learning
- Project Management
- Agile Methodology
- DevOps
- Communication
- Control Flow
- Debugging
- Version Control
- Python Syntax
- Data Structures
- Code Elegance
- Advanced Data Structures
- Documentation
- Code Optimization
Launch your Python Developer career with no prior experience needed! This program is perfect for career changers and those looking to break into the tech industry. Learn Python, a top programming language used in web development, data science, and automation, opening doors to exciting opportunities and competitive salaries.
Table of Contents
microsoft-data-analysis-visualization-with-python
introduction-to-data-analysis
unveiling-data-analysis
1 what-is-data-analysis
2 foundations-of-data-analysis_instructions
3 data-analysis-and-visualization-with-python-syllabus_instructions
4 the-difference-between-data-analysis-and-data-science_instructions
5 the-data-analysis-process
6 key-concepts-in-data-analysis_instructions
7 data-ethics-and-privacy-navigating-the-responsible-use-of-data
8 data-governance
setting-up-your-data-analysis-toolkit
9 setting-up-your-environment-for-data-analysis
10 jupyter-notebook-tips-and-tricks
11 demo-jupyter-notebook-shortcuts-and-productivity-tips
12 essential-python-libraries-for-data-analysis_instructions
13 use-cases-for-python-libraries
diving-into-datasets
14 understanding-datasets
15 common-dataset-types-and-sources_instructions
16 finding-and-accessing-real-world-datasets
17 data-cleaning-101_instructions
data-processing-and-manipulation
pandas-your-data-manipulation-powerhouse
18 manipulating-data-with-pandas
19 pandas-dataframes-the-basics
20 pandas-indexing-explained_instructions
21 demo-loading-and-inspecting-datasets-in-pandas
22 exploring-data-transformations
23 pandas-cheat-sheet_instructions
24 demo-transforming-data-with-pandas
the-hero-of-data-analysis-data-cleaning
25 exploratory-data-analysis-eda
26 the-importance-of-data-cleaning
27 essential-tactics-for-data-manipulation_instructions
28 identifying-and-handling-missing-data
29 handling-duplicate-values
30 common-causes-of-missing-data_instructions
31 detecting-and-removing-outliers
using-pandas-for-cleaning-and-exploration
32 data-types-in-python-choosing-the-right-fit
33 pandas-for-essential-analysis-tasks_instructions
34 demo-pandas-for-exploration-and-cleaning
35 taming-messy-data-with-pandas
data-visualization
introduction-to-visualization
36 charting-your-data-visually
37 what-is-data-visualization_instructions
38 common-visualizations
39 introduction-to-matplotlib
40 anatomy-of-a-matplotlib-plot_instructions
41 matplotlib-gallery_instructions
creating-visualizations
42 explore-visualization-libraries
43 choosing-the-right-visualization-library_instructions
44 interactive-plots-with-plotly
45 plotly-interactive-dashboards_instructions
46 customizing-visualizations-with-bokeh
interpreting-and-presenting-data-insights
47 use-data-for-storytelling
48 the-art-of-data-storytelling
49 strategies-for-data-storytelling_instructions
50 presenting-data-insights
51 data-visualization-best-practices_instructions
52 cognitive-load-theory-and-data-visualization_instructions
53 avoiding-bias-in-conclusions
introduction-to-generative-ai
basics-of-generative-ai
54 what-is-generative-ai
55 generative-ai-vs-other-ai_instructions
56 real-world-applications-of-generative-ai
57 the-ethics-of-ai-generated-content
58 ethical-guidelines-for-generative-ai_instructions
generating-synthetic-data-with-genai
59 filling-the-gaps-in-your-data
60 introduction-to-synthetic-data_instructions
61 using-generative-adversarial-networks-gans
62 synthetic-data-generation-techniques_instructions
data-augmentation
63 data-augmentation-supercharging-your-dataset
64 why-augmentation-matters
65 text-augmentation-techniques
66 image-augmentation-techniques_instructions
67 best-practices-for-data-augmentation_instructions
introduction-to-machine-learning
machine-learning-101
68 what-is-machine-learning
69 how-machine-learning-works
70 key-terminology-in-machine-learning_instructions
71 machine-learning-in-the-real-world
evaluating-model-performance
72 why-model-evaluation-matters
73 unraveling-the-confusion-matrix_instructions
74 demo-using-metrics-for-classification
75 regression-metrics-for-machine-learning
76 regression-metrics
77 beyond-the-numbers-interpreting-evaluation-metrics-in-context_instructions
building-your-first-machine-learning-models
78 from-data-to-predictions-the-magic-of-machine-learning
79 what-is-a-neural-network-in-machine-learning
80 machine-learning-basics_instructions
81 demo-linear-regression-with-scikit-learn
82 classification-with-logistic-regression
83 scikit-learn-documentation_instructions
84 your-first-machine-learning-model-a-guide_instructions
leveraging-synthetic-data-in-machine-learning
85 synthetic-data-in-ml-case-studies
86 demo-training-and-testing-with-synthetic-data
87 synthetic-data-balancing-innovation-and-responsibility
88 ethical-considerations-of-synthetic-data_instructions
89 data-and-visualization-with-python-pulling-it-all-together_instructions
microsoft-python-programming-fundamentals
introduction-to-python
unveiling-python-what-why-and-how
90 welcome-to-microsoft-python-developer-certification
91 microsoft-python-developer-certificate-syllabus_instructions
92 python-programming-fundamentals-syllabus_instructions
93 welcome-to-the-world-of-programming_instructions
94 programming-fundamentals
95 python-in-action-real-world-examples
96 explaining-python
97 the-power-of-python_instructions
98 python-in-the-wild-from-web-apps-to-machine-learning
your-python-toolkit-setting-up-the-environment
99 introducing-your-python-toolkit
100 installing-python-a-step-by-step-guide_instructions
101 choosing-your-ide-a-tour-of-options
102 what-is-jupyter-notebook_instructions
103 demo-navigating-jupyter-notebooks
first-steps-in-code-writing-a-python-program
104 your-first-python-words-syntax-and-structure
105 basic-operations-expressions-and-variables
106 variables-in-python-containers-for-your-data
107 hello-python-world_instructions
108 using-the-command-line-to-run-your-first-python-program_instructions
109 how-python-outputs-code
110 anatomy-of-a-python-program_instructions
python-basics
controlling-the-flow-conditional-statements-and-loops
111 decisions-and-selections-what-are-they_instructions
112 introduction-to-loops-and-conditional-statements_instructions
113 making-decisions-with-python-if-else-and-elif
114 repeating-actions-for-and-while-loops_instructions
115 control-flow-in-python-the-conductor-of-your-code_instructions
116 demo-step-by-step-of-tracing-code-execution
117 common-code-execution-pitfalls-how-to-avoid-them_instructions
organizing-your-data
118 introduction-to-lists_instructions
119 lists-are-a-go-to-data-container
120 mastering-lists-slicing-dicing-and-more
functions-and-modules
the-power-of-reusability-functions-classes-and-modules-unveiled
121 functions-pythons-building-blocks
122 classes-blueprints-for-objects
123 the-art-of-abstraction-functions-and-the-dry-principle_instructions
124 built-in-functions-are-pythons-handy-helpers
125 modules-your-codes-toolbox
organizing-your-code-functions-in-action
126 writing-your-own-functions
127 variable-scope-where-your-data-lives
128 variable-scope-how-they-behave_instructions
129 building-custom-classes_instructions
130 functions-in-the-real-world
131 best-practices-for-writing-python-functions_instructions
thinking-like-a-programmer-breaking-down-problems-with-functions
132 crafting-custom-classes
133 problem-solving-with-functions_instructions
134 divide-and-conquer-the-power-of-modularity_instructions
expanding-your-toolkit-with-modules-and-libraries
135 using-built-in-modules
136 external-libraries-supercharging-your-python-code
137 managing-packages-with-pip-installing-and-upgrading-libraries_instructions
138 python-libraries-the-power-of-the-community_instructions
139 importing-modules-expanding-pythons-powers
140 creating-your-own-module_instructions
data-structures-in-python
understanding-data-structures
141 data-structures-the-containers-of-your-code
142 python-data-structures-a-cheat-sheet_instructions
143 mutability-matters-changing-data-in-python_instructions
144 dictionaries-key-value-powerhouses
145 unleashing-the-power-of-dictionaries-real-world-applications_instructions
146 sets-the-unique-collection
147 data-structures-the-right-tool-for-the-job
148 data-structures-your-python-organization-system_instructions
149 ordered-vs-unordered-finding-your-data
putting-data-structures-to-work
150 demo-data-manipulation-in-python-using-practical-examples
151 dictionaries-in-depth-beyond-the-basics
152 demo-real-world-applications-and-when-to-use-each-data-structure
algorithms-and-lists-sorting-and-searching
153 sorting-lists-in-python
154 demo-searching-lists-in-python-find-what-you-need
155 algorithms-and-data-structures-a-deeper-dive_instructions
choosing-the-right-tool-data-structure-selection
156 choosing-the-right-data-structure-a-decision-framework
157 case-studies-matching-data-structures-to-problems
158 tips-and-tricks-for-data-structure-selection_instructions
error-handling-and-debugging
common-python-exceptions
159 introduction-to-error-handling-and-debugging
160 python-exceptions-part-1-understanding-the-red-flags
161 python-exceptions-part-2-anatomy-of-an-exception
162 common-python-exceptions-a-field-guide_instructions
basic-debugging-techniques
163 print-debugging-your-trusty-sidekick
164 interactive-debuggers-stepping-through-your-code
165 debugging-toolkit-essential-techniques-for-python-developers_instructions
166 debugger-the-why-and-how
exception-handling-in-python
167 catching-errors-with-try-except
168 demo-examples-of-real-world-exception-handling
169 exception-handling-best-practices_instructions
the-debugging-mindset-a-systematic-approach
170 the-detectives-guide-to-debugging
171 demo-debugging-in-action
172 common-debugging-strategies-used-by-experienced-developers_instructions
testing-basics-version-control
introduction-to-unit-testing
173 why-unit-tests-matter
174 unit-testing-removing-bugs-from-your-code
175 unit-testing-fundamentals_instructions
pytest-your-python-testing-companion
176 demo-getting-started-with-pytest
177 pytest-tips-and-tricks
178 pytest-fixtures-setting-the-stage-for-your-tests_instructions
179 test-organization-and-structure-in-pytest-keeping-your-tests-tidy_instructions
rewinding-time-version-control-with-git
180 introduction-to-git_instructions
181 git-essentials-for-working-developers
182 git-your-codes-time-machine
183 git-for-beginners_instructions
184 the-benefits-of-version-control
185 setting-up-git_instructions
186 demo-getting-setup-in-github
187 demo-what-is-the-difference-between-git-and-github
your-professional-portfolio
188 creating-a-software-development-portfolio_instructions
189 demo-examining-a-github-portfolio
190 set-up-your-github-account_instructions
191 a-guide-to-solve-problems-with-python_instructions
192 python-programming-fundamentals-putting-it-all-together_instructions
Resolve the captcha to access the links!