English | MP4 | AVC 1280×720 | AAC 44KHz 2ch | 323 Lessons (26h 16m) | 6.76 GB
Master AI to Build Intelligent Systems and Drive Innovation
Begin your journey with the Mastering AI specialization, designed for both aspiring and experienced professionals. This program equips you with essential skills in artificial intelligence, machine learning, and deep learning to develop cutting-edge solutions.
Explore key concepts such as neural networks, statistical foundations, predictive modeling, and AI-driven computer vision and speech recognition. Through hands-on projects and real-world case studies, gain the expertise to build intelligent models, optimize deep learning architectures, and apply AI to solve complex challenges.
The specialization comprises four comprehensive courses
Python and Statistics Foundations: Build a strong foundation in Python programming, probability, and statistical analysis for AI applications.
Applied Machine Learning with Python: Learn to develop, train, and optimize machine learning models to extract insights and drive AI solutions.
Practical Deep Learning with Python: Master deep learning techniques, neural networks, and advanced model optimization for real-world AI applications.
AI Applications: Computer Vision and Speech Recognition: Explore AI-driven image processing and speech recognition technologies.
By the end of this program, you’ll be prepared to design and implement AI solutions, harness the power of deep learning, and advance your career in artificial intelligence. Join us to unlock the full potential of AI and drive innovation across industries!
Applied Learning Project
Learners will acquire proficiency in building complex machine learning and deep learning models to solve challenging problems while demonstrating a high level of problem-solving skills. Learners will learn to program using Python, clean and transform data using various data preprocessing methods, and apply statistical and inferential modeling.
Learners will also gain expertise in different machine learning techniques. Additionally, they will explore deep learning techniques such as Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Faster R-CNN, and other advanced architectures.
The curriculum encompasses knowledge of AI processing for video, audio, and speech recognition. Learners will progress from basic to advanced programming concepts for handling AI-related tasks. Their ability to apply acquired knowledge will be demonstrated through individual projects, serving as the culmination of their educational journey.
What you’ll learn
- Analyze and apply fundamental Python functions and methods.
- Utilize and apply various machine learning models effectively.
- Design and optimize neural networks for AI applications.
- Explain and implement image, video, and audio processing methods.
Skills you’ll gain
- Association Rule Learning
- Model Optimization
- Computer Vision
- Statistical Inference
- Python (Programming Language)
- Deep Learning
- Recommendation Engines
- Machine Learning
- Artificial Intelligence
- Model Evaluation
- Images and Video Processing
- Data Manipulation with NumPy and Pandas
- Association Rule Mining and Recommendation
- Data Analysis
- Supervised Learning
- Linear Regression
- Data Visualization
- Statistical Analysis
- Data Manipulation
- Implementing Optimizing Algorithms
- Manipulating complex datasets
- Analyzing different types frameworks
- Building SLP and MLP models
- Creating models with different algorithms
- Image and Video Processing with OpenCV
- Speech Recognition
- Speech Analysis and Processing
- Morphological Image Operations
Table of Contents
ai-applications-computer-vision-and-speech-analysis
computer-vision-with-opencv
evolution-of-ai-and-computer-vision
1 welcome-to-ai-applications-computer-vision-and-speech-recognition_instructions
2 course-introduction
3 industrial-breakthrough-in-audio-and-speech-recognition
4 speech-recognition-technology
5 computer-vision-application
6 computer-vision-applications-medical-and-plant-disease
7 ai-responsibility-pyramid
8 evolution-of-computer-vision-and-speech-analysis
9 evolution-of-speech-analysis
10 what-is-opencv
11 exploring-technologies-for-computer-vision_instructions
setting-up-environment
12 installing-opencv-on-windows
13 installing-opencv-on-windows-handling-libraries-in-jupyter
14 installing-integrated-libraries-numpy-matplotlib-scipy-and-pillow
15 installing-integrated-libraries-dlib-scikit-and-pytorch
16 ethical-considerations-in-computer-vision_instructions
image-processing
17 operations-on-opencv
18 demonstration-loading-the-image-and-encoding-image-to-rgb
19 demonstration-resizing-rotating-and-flipping-the-image
20 demonstration-gaussian-blur
21 demonstration-edge-detection-and-conversion
22 demonstration-image-thresholding-binary-image
23 demonstration-different-methods-of-thresholding
24 demonstration-practical-use-cases
25 what-is-adaptive-thresholding
26 demonstration-of-global-adaptive-threshold
27 demonstration-implementing-adaptive-thresholding-methods
28 lbph-algorithm-local-binary-patterns-histogram_instructions
morphological-operations
29 morphological-operations
30 morphological-operations-in-opencv
31 demonstration-opening-dilation-and-erosion
32 demonstration-closing-and-morphological-gradient
33 blackhat-and-whitehat-transformations
34 demonstration-whitehat-tophat
35 demonstration-blackhat
36 watershed-algorithm-for-image-processing_instructions
module-wrap-up-and-assessment
37 summary-of-computer-vision-with-opencv
video-processing-using-opencv
video-processing-operations
38 video-processing
39 demonstration-implementing-frame-by-frame-video-processing
40 demonstration-exiting-the-processing-operation
41 demonstration-initializing-the-video-frames
42 demonstration-saving-the-frames
43 demonstration-loading-the-data
44 demonstration-reading-and-writing-operations
45 demonstration-histogram-matching
46 demonstration-matching-source-and-reference-images
47 demonstration-cumulative-distribution-function
48 demonstration-differences-in-images
49 marker-based-augmented-reality-ar_instructions
exploring-various-techniques-for-face-detection-and-recognition
50 haar-cascade
51 haar-cascade-algorithm-overview
52 haar-cascade-application-and-limitation
53 demonstration-implementation-of-haar-cascade-algorithm
54 demonstration-face-detection-code-for-static-image
55 demonstration-implementing-boundary-box-for-face-detection
56 demonstration-applying-face-detection-on-images
57 introduction-to-face-recognition
58 demonstration-setting-up-pre-requisite-libraries-and-loading-the-image
59 demonstration-face-recognition-and-detection
60 demonstration-facial-landmark-detection-with-file-loading-and-library-setup
61 demonstration-adjusting-video-details-through-opencv
62 demonstration-face-recognition
63 demonstration-encoding-facial-landmarks
64 demonstration-implementing-facial-landmarks-on-images
65 demonstration-implementing-facial-landmarks-on-videos
66 pros-and-cons-of-opencv-s-haar-cascade-face-detector_instructions
module-wrap-up-and-assessment
67 summary-of-video-processing-with-opencv
speech-recognition-and-audio-analysis
speech-and-its-variation
68 introduction-to-speech-audio-data
69 introduction-to-speech-human-computer-interaction-and-applications
70 processing-speech
71 speech-production
72 difficulties-in-analyzing-speech
73 working-of-sound-waves
74 adc-and-sample-rate-bit-rate
75 conversion-of-adc-analog-to-digital-converter-to-dac-digital-to-analog-converter
76 demonstration-generating-sound
77 demonstration-spectrogram
78 demonstration-signal-frequencies-over-time
79 summary-of-audio-file-analysis
80 demonstration-converting-a-sound-file-into-waveform
81 speech-analysis-in-cyber-security_instructions
digitizing-and-analyzing-speech
82 human-speech
83 speech-waveform
84 digital-signal-processing
85 mfcc-mel-frequency-cepstral-coefficient
86 windowing-formula-and-cepstrum
87 demonstration-computing-the-spectrogram
88 demonstration-digitizing-the-audio-data
89 demonstration-converting-fragmented-parts-of-audio-file-for-speech-recognition
90 voice-onset-voice-offset-tremor-and-noise-detection
91 understanding-the-concepts-of-voice-onset-and-offset
92 tremor-detection
93 demonstration-zcr-pitch-detection-voice-activity-detection
94 demonstration-tremor-detection
95 speech-processing-interactive-creation-and-evaluation-spice-toolkit_instructions
module-warp-up-and-assessment
96 summary-of-speech-recognition-and-audio-analysis
course-wrap-up-and-assessment
untitled-lesson
97 summary-for-ai-applications-computer-vision-and-speech-recognition
98 practice-project-vehicle-tracking-and-detection_instructions
Resources
module-1-resources
99 resources
module-2-resources
100 Traffic
101 resources
module-3-resources
102 resources
module-4-resources
103 highway
104 resources
applied-machine-learning-with-python
introduction-to-machine-learning
machine-learning-essentials
105 welcome-to-applied-machine-learning-with-python_instructions
106 course-introduction
107 machine-learning-in-industry
108 how-companies-use-machine-learning
109 how-companies-are-crafting-the-future_instructions
overview-of-machine-learning
110 machine-learning-process
111 steps-in-machine-learning
112 types-of-machine-learning
113 machine-learning-101_instructions
regression
114 introduction-to-linear-regression
115 real-life-examples
116 calculating-ols
117 equation-of-ols
118 assumptions-in-linear-regression
119 demonstration-setting-up-the-model
120 calculating-r-square-and-rmse
121 residual-plot-and-q-q-plot
122 cooks-distance
123 real-life-examples-of-logistic-regression
124 what-is-logistic-regression
125 cost-function
126 assumptions-in-logistic-regression
127 demonstration-of-logistic-regression-transforming-data
128 demonstration-of-logistic-regression-developing-the-model
129 regression-and-its-assumptions_instructions
130 role-of-regularization_instructions
evaluation-metrics
131 confusion-matrix
132 example-for-calculating-confusion-matrix
133 conditions-for-over-fitting-and-under-fitting
134 overfitting-and-underfitting
135 performance-metrics-mse-rmse-mae-mape
136 r-square-rmsle-and-adjusted-r-square
137 working-of-r-square
138 significance-of-r-square
139 evaluation-of-all-things-predictive_instructions
module-wrap-up-and-assessment
140 summary-for-inception-of-machine-learning
machine-learning-algorithms
decision-tree-and-random-forest
141 classification-in-machine-learning
142 what-is-decision-tree
143 decision-tree-entropy-and-information-gain
144 step-by-step-building-of-decision-tree
145 pruning-in-decision-tree
146 demonstration-importing-data
147 demonstration-building-decision-tree-and-random-forest
148 demonstration-importance-of-features
149 demonstration-production-ready-random-forest
150 demonstration-hyperparameter-tuning
151 decision-trees-and-random-forests_instructions
svm-knn-and-naive-bayes-algorithms
152 what-is-svm
153 terminologies-in-svm
154 hinge-loss-function-and-other-parameters
155 demonstration-of-svm-exploring-the-data
156 demonstration-of-svm-setting-up-the-svm-classifier
157 what-is-naive-bayes
158 working-of-naive-bayes-bayes-theorem
159 example-of-naive-bayes-algorithm
160 demonstration-of-naive-bayes-code
161 working-of-knn
162 example-of-knn-algorithm
163 demonstration-of-knn-setting-up-the-model
164 demonstration-of-knn-transforming-and-scaling-data
165 demonstration-of-knn-creating-classifier
166 svm-knn-and-naive-bayes-when-to-use-which-algorithm_instructions
dimensionality-reduction
167 dimensionality-reduction
168 introduction-to-pca
169 applying-pca
170 eigen-values-and-eigen-vectors
171 demonstration-initializing-pca
172 demonstration-determining-optimal-number-of-components-through-pca
173 demonstration-implementing-optimal-pca
174 working-of-lda
175 demonstration-of-lda
176 best-practices-for-dimensionality-reduction-pca-vs-lda_instructions
module-wrap-up-and-assessment
177 summary-for-machine-learning-algorithms
association-rule-mining-and-recommendation-system
association-rules
178 what-are-association-rules
179 apriori-algorithm
180 demonstrating-apriori-algorithm
181 fp-growth-in-association-rule_instructions
recommendation-engines
182 what-are-recommendation-engine
183 cbf
184 demonstration-of-recommendation-engine-preparing-data
185 demonstration-testing-the-model
186 how-recommendation-engines-personalize-your-world_instructions
reinforcement-learning-and-boosting
187 elements-for-reinforcement-learning
188 demonstration-of-boosting-explaining-the-dataset
189 demonstration-of-boosting-cleaning-and-transforming-dataset
190 demonstration-of-boosting-factors-affecting-promotion
191 demonstration-of-boosting-total-score-and-service-affecting-promotion
192 demonstration-of-boosting-age-previous-year-rating-influencing-promotion
193 demonstration-of-boosting-department-influencing-promotion
194 demonstration-of-boosting-education-affecting-promotion-and-summarization
195 demonstration-of-boosting-modeling-the-data
196 demonstration-of-boosting-building-a-model
197 working-of-k-means-algorithm
198 demonstration-of-k-means-clustering
199 training-models-to-get-better-with-experience_instructions
module-wrap-up-and-assessment
200 summary-for-association-rule-mining-and-recommendation-system
course-wrap-up-and-assessment
untitled-lesson
201 course-summary-for-applied-machine-learning-with-python
202 final-project-cab-booking-demand-analysis_instructions
Resources
module-4-resources
203 resources
module-3-resources
204 resources
module-2-resources
205 resources
module-1-resources
206 resources
practical-deep-learning-with-python
deep-learning-components
environment-set-up-and-configuration
207 welcome-to-practical-deep-learning-with-python_instructions
208 course-introduction
209 environment-configuration
210 system-requirements-and-pre-requisite-for-studying-deep-learning_instructions
essentials-of-deep-learning
211 machine-learning-vs-deep-learning
212 what-is-deep-learning
213 neural-networks
214 artificial-neural-network-ann
215 ann-types-and-applications
216 forward-propagation
217 perceptron
218 learning-rate
219 what-is-activation-function
220 activation-function-and-its-types
221 importance-of-epoch
222 single-layer-perceptron-define-sigmoid-function
223 single-layer-perceptron-decision-boundary
224 learning-rate-in-deep-learning_instructions
building-perceptron-and-its-working
225 limitations-of-single-layered-perceptron
226 multi-layered-perceptron
227 what-is-backpropagation
228 backpropagation
229 demonstration-building-a-simple-neural-network
230 demonstration-understanding-how-backpropagation-has-worked
231 demonstration-handwritten-digits-classification-data-preprocessing
232 demonstration-handwritten-digits-classification-designing-the-model
233 demonstration-handwritten-digits-classification-optimizing-the-model
234 hebbian-learning-algorithm_instructions
module-wrap-up-and-assessment
235 summary-of-deep-learning-components
deep-learning-with-cnn-rcnn-and-faster-rcnn
convolutional-neural-network
236 limitations-of-mlp
237 mlp-limitations-resolving-the-issue-with-cnn
238 visual-cortex-and-cnn
239 convolutional-layer
240 working-of-convolutional-layer
241 demonstration-load-and-preprocess-the-data
242 demonstration-designing-the-model
243 demonstration-building-the-cnn-model
244 demonstration-model-accuracy
245 demonstration-adding-more-layers
246 demonstration-building-basic-cnn-model-with-new-parameters
247 demonstration-pre-trained-model
248 why-convolutions-are-important_instructions
tensorflow-hub-for-object-detection-using-faster-rcnn
249 classification-and-object-detection
250 introduction-to-rcnn
251 r-cnn-bounding-box-regression
252 pre-trained-model
253 fast-regional-cnn
254 demonstration-creating-base-variables-and-loading-the-model
255 demonstration-training-the-model-and-visualizing-the-predictions
256 demonstration-svm-as-a-classifier
257 svm-classifier-in-object-detection_instructions
faster-rcnn-recurrent-convolutional-neural-network
258 fast-rcnn-limitations
259 advent-of-faster-r-cnn
260 tensorflow-hub
261 demonstration-object-detection-with-faster-rcnn-pretrained-model-setup
262 demonstration-object-detection-with-faster-rcnn-building-the-model
263 faster-r-cnn-architecture_instructions
module-wrap-up-and-assessment
264 summary-of-cnn-in-deep-learning
265 summary-of-faster-rcnn
deep-learning-with-rnn-lstm-and-model-optimization
working-of-recurrent-neural-networks-rnn
266 rnn-fundamentals
267 rnn-architecture
268 rnn-architecture-workflow
269 implementing-rnn
270 demonstration-rnn-dataset-preparation
271 demonstration-rnn-building-the-model
272 recurrent-neural-networks-rnns-in-deep-learning_instructions
lstm-architecture
273 basics-of-lstm
274 lstm-structure
275 forget-gate-and-input-gate
276 output-gate
277 importance-of-lstm-architecture
278 types-of-lstm
279 demonstration-next-word-prediction-processing-the-corpus
280 demonstration-next-word-prediction-layers
281 demonstration-next-word-prediction-model-compilation-and-prediction
282 attention-based-lstm-long-short-term-memory_instructions
283 capsule-networks-in-deep-learning_instructions
module-optimization-and-compilation
284 improving-a-model
285 model-optimization
286 using-adam-optimizer
287 model-compilation
288 model-compilation-with-popular-frameworks
289 demonstration-model-compilation-preparing-the-dataset
290 demonstration-building-and-compiling-model
291 demonstration-from-rmsprop-to-adam
292 model-optimizers-beyond-adam_instructions
module-wrap-up-and-assessment
293 summary-of-deep-learning-with-rnn-and-lstm-with-model-optimization
course-wrap-up-and-assessment
untitled-lesson
294 course-summary-for-practical-deep-learning-with-python
295 practice-project-mnist-fashion-dataset-analysis_instructions
Resources
module-3-datasets
296 resources
module-2-datasets
297 resources
python-and-statistics-foundations
python-essentials
programming-with-python
298 specialization-introduction
299 welcome-to-python-and-statistics-foundations-course_instructions
300 course-introduction
301 unlocking-python-the-language-for-every-developer_instructions
302 python-installation_instructions
303 python-installation_miniconda
304 programming-language-and-myths
305 python-for-ai-ml-code-simplicity
306 python-for-ai-ml-ease-of-learning
307 python-tokens-types
308 literals
309 operators-basic-operators
310 operators-membership-and-identity-operators
data-types
311 explaining-data-types-in-python
312 demonstration-of-data-types-numeric-sequence-and-mapping
313 python-variables_instructions
314 python-data-types-numerical-and-strings_instructions
315 python-data-types-tuples-sets-and-dictionaries_instructions
conditional-statements
316 executing-conditional-statement
317 demonstration-of-if-else-statement
318 executing-while-loop
319 demonstration-of-for-loop
320 looping-multiple-conditions
advanced-functions-and-file-handling
321 file-handling
322 file-handling-basics_instructions
323 manipulating-files
324 user-defined-functions
325 variable-argument-and-variable-keyword-argument
326 lambda-functions
327 more-on-functions-and-arguments
328 modules-in-python
329 demonstration-of-modules
module-wrap-up-and-assessment
330 summary-of-python-essentials
exploring-data-with-numpy-and-pandas
numpy-with-python
331 memory-and-performance-comparison-between-python-lists-and-numpy-arrays_instructions
332 exploring-numpy
333 numpy-operation
334 working-with-numpy
data-manipulation-using-pandas
335 data-manipulation-and-analysis-with-python-pandas_instructions
336 pandas-framework
337 pandas-dataframe-operation
338 working-with-dataframes-in-pandas
339 dataframes-with-pandas-operations-and-insights
340 creating-a-series-in-pandas
341 working-with-pandas-series
dataframes-in-action
342 dataframe-data-maniplulation
343 dataframe-joining
344 dataframe-grouping-the-data
345 dataframe-data-cleaning
346 dataframe-data-adjusting
data-visualization
347 data-visualization-fundamentals_instructions
348 introduction-to-matplotlib_instructions
349 matplotlib-library
350 plotting-charts-with-matplotlib
351 plotting-histogram-and-box-plot
352 plotting-multiple-charts
353 introduction-to-seaborn-scatter-plot
354 basic-charts-in-seaborn
355 seaborn-heatmap-manipulation
356 seaborn-flights-dataset
357 seaborn-gaining-insights-in-flight-data
358 visualizing-charts-with-plotly
359 customizing-different-charts-in-plotly
module-wrap-up-and-assessment
360 summary-exploring-numpy-and-pandas-in-python
statistics-in-python
comprehending-statistics
361 the-importance-of-statistics-in-data-interpretation_instructions
362 what-is-statistics
363 measures-of-central-tendency
364 managing-statistical-data
365 exploring-and-analyzing-data
statistical-dispersion
366 measures-of-dispersion
367 dispersion-demonstration
368 application-of-dispersion-in-large-data
probability-foundation
369 introduction-to-probability_instructions
370 probability-sample-space-and-events
371 need-for-probability
372 types-of-probability
373 marginal-and-joint-probability-demonstration
374 conditional-probability-demonstration
hypothesis-testing
375 introduction-to-hypothesis-testing_instructions
376 what-is-hypothesis-testing
377 steps-for-hypothesis-testing
378 null-and-alternate-hypothesis
379 statistical-test-interpretation
380 one-tailed-and-two-tailed-test
381 hypothesis-testing-demonstration
382 margin-of-error-and-confidence-interval-demonstration
module-wrap-up-and-assessment
383 summary-statistical-analysis-with-python
course-wrap-up-and-assessment
untitled-lesson
384 course-summary-python-and-statistics-foundations
385 practice-project-travel-aggregator-analysis_instructions
Resources
module-4-dataset
386 resources
module-3-dataset
387 resources
module-2-datasets
388 resources
Resolve the captcha to access the links!