English | MP4 | AVC 1280×720 | AAC 44KHz 2ch | 276 Lessons (20h 17m) | 4.64 GB
Master Transformative Data Analytics with Python, SQL, and Power BI to derive actionable insights and make data-driven decisions.
What you’ll learn
- Apply Python, SQL, and Power BI to analyze, manipulate, and manage data, laying a strong foundation for advanced analytics and decision-making.
- Create impactful visualizations and conduct exploratory data analysis using advanced Python libraries to uncover trends and insights.
- Build, evaluate, and refine predictive models to generate actionable insights, supporting data-driven strategies for real-world challenges.
- Develop interactive dashboards and advanced analytics solutions with Power BI, enabling data visualization and informed decision-making.
Skills you’ll gain
- Inferential Statistics
- Microsoft SQL Server Integration
- Data Visualization
- Python (Programming Language)
- Predictive Modeling
- Data Manipulation with SQL
- Publishing Reports and Dashboards
- Exploratory Data Analysis
- Data Analysis
- Power BI
- Machine Learning
- Model Evaluation
Begin your journey with the Applied Data Analytics Specialization, designed for both beginners and professionals. This program equips you with essential skills in Python, SQL, and Power BI to analyze, visualize, and extract actionable insights.
Explore key concepts like data visualization, SQL queries, predictive modeling, and building dashboards. Through hands-on projects and case studies, gain the expertise to build predictive models, create dynamic dashboards, and solve business challenges effectively.
The specialization comprises four comprehensive courses
Applied Data Analytics with Python and SQL: Master data manipulation, querying, and analysis using Python and SQL.
Python for Data Visualization and Analysis: Learn to create impactful visuals and perform exploratory data analysis using Python libraries like Matplotlib, Seaborn, and Plotly.
Predictive Modeling with Python: Develop and optimize machine learning models for actionable insights.
Advanced Analytics with Power BI: Leverage Power BI to create interactive dashboards and reports to derive actionable insights for making data-driven decisions.
By the end of this program, you’ll be ready to solve complex data challenges, deliver impactful insights, and advance your career in analytics. Join us to unlock the full potential of data and make meaningful contributions in any industry!
Applied Learning Project
In this specialization, learners will apply their data analytics skills to real-world scenarios by analyzing customer behavior with Python and SQL, building predictive models for business forecasting, and creating interactive dashboards with Power BI. These projects provide hands-on experience in data visualization, predictive modeling, and actionable insights to tackle complex business challenges effectively.
Table of Contents
applied-data-analytics-with-python-and-sql
python-essentials
programming-with-python
1 welcome-to-applied-data-analytics-with-python-and-sql_instructions
2 course-introduction
3 programming-languages-and-myths
4 python-for-ai-ml-code-simplicity
5 python-for-ai-ml-ease-of-learning
6 starting-with-python_instructions
7 starting-with-python_miniconda
8 identifiers-in-python
9 literals-in-python
10 arithmetic-comparison-logical-and-assignment-operators
11 bitwise-and-membership-operators
12 python-token-types
data-types-in-python
13 boolean-operators-in-conditional-statement
14 and-or-not-in-python
15 working-with-dictionaries
16 manipulating-dictionary
17 tuples-in-python
18 working-with-strings-in-python
19 managing-strings
20 operations-on-string
21 creating-lists
22 immutable-and-mutable-data-types
23 operations-performed-on-lists
24 sets
25 manipulating-sets
26 an-introduction-to-python-data-types_instructions
conditional-statements
27 exploring-pythons-built-in-functions
28 built-in-functions-in-python_instructions
29 conditional-statement-if-condition
30 conditional-statement-if-else-condition
31 initializing-for-loop
32 conditional-statements-and-for-loop-in-python_instructions
33 break-continue-and-pass-statement
34 control-flow-with-python-break-continue-and-pass-statements_instructions
35 validating-prime-numbers
36 mastering-the-while-loop-in-python
functions-and-file-handling
37 opening-files
38 file-operations
39 global-vs-local-variables-in-python
40 introduction-to-lambda-functions-in-python
41 built-in-modules
42 standard-modules
43 creating-user-defined-functions
44 functions-with-multiple-parameters
45 lambda-functions-in-python_instructions
46 file-handling-with-python_instructions
module-wrap-up-and-assessment
47 summary-of-python-essentials
exploring-data-with-numpy-and-pandas
numpy-with-python
48 introduction-to-numpy-in-python
49 hands-on-with-numpy
50 numpy-in-python_instructions
data-manipulation-using-pandas
51 introduction-to-pandas-in-python
52 working-with-pandas-series
53 understanding-pandas-dataframes
54 data-manipulation-with-pandas
55 combining-datasets-with-pandas
56 getting-started-with-pandas_instructions
data-visualization
57 data-visualization-fundamentals_instructions
58 matplotlib-library
59 plotting-charts
60 plotting-histogram-and-box-plot
61 plotting-multiple-charts
62 introduction-to-seaborn-scatter-plot
63 seaborn-basic-charts
64 seaborn-heatmap-manipulation
65 seaborn-flights-dataset
66 seaborn-gaining-insights-in-flight-data
67 visualizing-charts-with-plotly
68 customizing-different-charts-in-plotly
69 data-visualization-with-matplotlib_instructions
70 visualization-with-seaborn_instructions
module-wrap-up-and-assessment
71 summary-of-exploring-with-numpy-and-pandas
web-scraping-and-sql
urllib-and-scraping-data-with-python
72 what-is-web-scraping
73 web-scraping-process-flow
74 managing-data
75 beautiful-soup
76 demonstration-of-beautiful-soup
77 demonstration-of-scrapy
78 web-scraping-best-practices_instructions
normalization
79 what-is-sql
80 operation-on-keys
81 normalization-in-databases
82 types-of-normalization-1-nf
83 types-of-normalization-2-nf
84 types-of-normalization-3-nf
85 types-of-normalization-4-nf
86 types-of-normalization-5-nf
87 installation-of-ms-sql-server
88 difference-between-ms-sql-server-and-mysql_instructions
sql-commands
89 ddl-commands
90 dql-commands
91 dml-commands
92 dcl-commands
93 tcl-commands
94 setting-up-sql-server
95 managing-foreign-key
96 inserting-data
97 deleting-data
98 alter-command
99 setting-up-transaction
100 sql-commands_instructions
python-integration-with-ms-sql-server
101 connecting-with-database
102 creating-table
103 inserting-data
104 selecting-data
105 updating-records
106 deleting-records
107 python-with-microsoft-sql-server_instructions
module-wrap-up-and-assessment
108 summary-of-web-scraping-and-sql
course-wrap-up-and-assessment
untitled-lesson
109 course-summary-applied-data-analytics-with-python-and-sql
110 practice-project-data-analysis-of-police-records_instructions
Resources
module-2-resources
111 resources
module-3-resources
112 resources
module-4-resources
113 resources
predictive-modeling-with-python
data-and-information
data-types-in-statistics
114 welcome-to-predictive-modeling-with-python_instructions
115 course-introduction
116 data-types
117 categorical-data
118 nominal-data
119 demonstration-of-data-types-dataset-description
120 demonstration-of-types
statistical-analysis
121 what-is-statistics
122 measures-of-central-tendency
123 demonstration-of-central-tendency
124 applications-of-central-tendency-in-statistics_instructions
statistical-dispersion
125 measures-of-dispersion
126 demonstration-measures-of-dispersion
127 libraries-for-statistical-analysis_instructions
module-wrap-up-and-assessment
128 summary-of-data-and-information
probability-distribution-function
general-probability-distribution
129 probability-density-and-mass-function
130 cumulative-distribution-function
131 discrete-probability
132 example-of-pdf-and-pmf_instructions
negative-bernoulli-and-geometric-distribution
133 negative-bernoulli-distribution
134 demonstration-of-negative-bernoulli-distribution
135 geometric-distribution
136 demonstration-of-geometric-distribution
137 importance-of-negative-bernoulli-and-geometric-distributions_instructions
poisson-and-uniform-distribution
138 poisson-distribution
139 example-of-poisson-distribution
140 demonstration-of-poisson-distribution
141 continuous-probability-distribution
142 uniform-distribution
143 continuous-probability-distribution-and-uniform-distribution-mathematical_instructions
exponential-and-normal-distribution
144 exponential-distribution
145 demonstration-of-exponential-distribution
146 normal-distribution
147 demonstration-of-normal-distribution
module-wrap-up-and-assessment
148 summary-of-probability-distribution-functions
inferential-statistics
introduction-to-central-limit-theorem
149 central-limit-theorem
150 demonstration-of-central-limit-theorem
151 demontration-conclusion-of-central-limit-theorem
152 central-limit-theorem-clt-mathematical-example_instructions
statistical-inference-methods
153 population-and-sample-space
154 parameter-and-statistics
155 forms-of-inferential-statistics
156 point-and-interval-estimation
157 maximum-likelihood
158 demonstration-exploring-data
159 demonstration-drawing-sample-data
statistical-hypothesis-and-significance-testing
160 hypothesis-testing
161 hypothesis-testing-example
162 statistical-test-implementation
163 one-tailed-and-two-tailed-test
164 z-test-and-t-test
165 power-analysis
166 demonstration-of-confidence-interval-and-margin-of-error
167 demonstration-of-hypothesis-testing
168 demonstrating-power-analysis
169 statistical-inference-real-world-applications_instructions
parametric-and-non-parametric-tests
170 chi-square-test
171 pearson-and-spearman-correlation
172 chi-square-test-demonstration
173 pearson-correlation-demonstration
174 spearman-correlation-demonstration
175 anova
176 example-for-one-way-anova-part-1
177 example-for-two-way-anova-part-2
178 demonstration-for-one-way-anova
179 demonstration-for-two-way-anova
180 shapiro-wilk-test_instructions
module-wrap-up-and-assessment
181 summary-for-inferential-statistics
introduction-to-exploratory-data-analysis-eda
understanding-eda
182 what-is-eda
183 univariate-analysis-data-and-outliers
184 univariate-analysis-kurtosis-and-chart-types
185 multivariate-analysis
186 multivariate-analysis-covariance-correlation-and-association
187 multivariate-analysis-correlation-matrix
188 multivariate-analysis-scatter-plots-and-heatmaps
189 understanding-exploratory-data-analysis-eda_instructions
data-cleaning-and-pre-processing
190 identifying-and-handling-missing-data
191 sampling-methods
192 mean-median-mode-imputation
193 data-normalization-and-standardization
194 methods-to-transform-data
195 univariate-bivariate-and-multivariate-imputation
196 demonstration-i-understanding-the-data
197 demonstration-ii-visualizing-and-handling-missing-data
198 demonstration-iii-scaling-and-imputation-of-data
199 demonstration-iv-train-test-split
200 demonstration-v-stratified-k-fold-cross-validation
201 demonstration-vi-sampling-and-evaluation
202 best-practices-in-data-pre-processing_instructions
feature-engineering-and-data-transformation
203 introduction-to-feature-engineering
204 feature-transformation
205 encoding-one-hot-encoding
206 encoding-label-encoding
207 autofeat-library
208 demonstration-i-setting-up-the-scenario
209 demonstration-ii-data-transformation
210 demonstration-iii-encoding
211 demonstration-iv-autofeat
212 overview-of-autofeat-library_instructions
module-wrap-up-and-assessment
213 summary-for-introduction-to-eda
predictive-modeling-and-analysis
regression
214 introduction-to-linear-regression
215 assumptions-in-linear-regression
216 working-of-linear-regression
217 cost-function-in-linear-regression
218 gradient-descent-in-linear-regression
219 demonstration-of-linear-regression-building-model
220 demonstration-of-linear-regression-testing-the-model
221 logistic-regression
222 cost-function-in-logistic-regression
223 gradient-descent-in-logistic-regression
224 importance-of-sigmoid-function
225 demonstration-logistic-regression-data-processing
226 demonstration-logistic-regression-model-execution
227 regularization-in-regression_instructions
classification-decision-tree-and-random-forest
228 classification-in-machine-learning
229 decision-tree-part-1-what-is-decision-tree
230 decision-tree-part-2-what-is-random-forest
231 basic-terminologies-of-decision-tree
232 working-of-decision-tree
233 building-a-decision-tree
234 advantages-and-disadvantages-of-decision-tree
235 demonstration-part-1-explaining-the-scenario
236 demonstration-part-2-exploring-the-data
237 demonstration-part-3-profiling-report
238 demonstration-part-4-attrition-and-univariate-graph
239 demonstration-part-5-data-pre-processing
240 demonstration-part-6-building-decision-tree
241 demonstration-part-7-tree-classifier
242 demonstration-part-8-pros-and-cons
243 random-forest-example-part-1-ensemble-learning-and-bagging
244 random-forest-example-part-2-working-of-random-forest
model-evaluation-and-optimization
245 performance-metrics-for-regression-mae-and-mape
246 performance-metrics-for-regression-mse-rmse-rmsle-and-r-square
247 confusion-matrix
248 roc-and-auc
249 hyperparameter-tuning-and-optimization
250 model-selection
251 model-evaluation
252 bias-variance-trade-off
253 cross-validation
254 demonstration-i-grid-search-analyze-the-data
255 demonstration-ii-grid-search-building-model
256 optuna-a-powerful-tool-for-hyperparameter-optimization_instructions
module-wrap-up-and-assessment
257 summary-of-predictive-models
course-wrap-up-and-assessment
untitled-lesson
258 course-summary-of-predictive-modeling-with-python
259 black-friday-sales-analysis_instructions
Resources
module-6-resources
260 resources
module-5-resources
261 resources
module-4-resources
262 resources
module-3-resources
263 resources
module-1-resources
264 resources
python-for-data-visualization-and-analysis
visualization-with-matplotlib
data-visualization-with-matplotlib
265 welcome-to-python-for-data-visualization-and-analysis_instructions
266 course-introduction
267 environment-set-up
268 importance-of-data-visualization
269 from-numbers-to-narratives_instructions
types-of-plots-and-charts
270 line-plot
271 bar-chart
272 horizontal-bar-chart
273 stacked-bar-chart
274 histogram
275 demonstration-plotting-line-and-bar-graph
276 demonstration-plotting-histogram
277 choosing-the-right-chart-bar-charts-line-charts-and-histogram_instructions
278 choosing-the-right-chart-type_instructions
plotting-different-charts
279 scatter-plot
280 pie-chart
281 box-plot
282 customizing-charts
283 demonstration-pie-chart
284 demonstration-scatter-plot-and-box-plot
285 choosing-the-right-chart-scatter-pie-and-box_instructions
module-wrap-up-and-assessment
286 summary-of-visualization-with-matplotlib
data-visualization-with-seaborn
seaborn-library
287 what-is-seaborn
288 installing-and-setting-up-seaborn
289 comparing-seaborn-with-matplotlib
290 seaborn-with-matplotlib_instructions
plot-types
291 relational-plot-rel-plot
292 distribution-plot-dist-plot
293 categorical-plot-cat-plot
294 demonstration-visualizing-charts-with-seaborn
295 demonstration-visualizing-heatmap
296 demonstration-category-relational-and-distribution-plots
297 demonstration-personalizing-charts-and-visuals
298 demonstration-tailoring-graphs-and-visuals
299 a-guide-to-seaborn_instructions
module-wrap-up-and-assessment
300 summary-for-data-visualization-with-seaborn
interactive-data-visualization
plotly-library
301 plotly
302 customizing-basic-plot-background-and-markers
303 customizing-basic-plot-lines-titles-and-labels
304 customizing-basic-plot-interactive
305 interactive-plots
306 demonstration-plots-with-hover-feature
307 demonstration-customizing-hover-features-and-tooltips
308 turning-static-plots-interactive_instructions
plotly-dashboard
309 plotly-dash
310 demonstration-defining-layout-and-structure
311 demonstration-building-web-apps
312 demonstration-chaining-callbacks
313 demonstration-multiple-inputs-and-outputs-with-interactions
314 demonstration-importing-airbnb-data
315 demonstration-web-app-for-airbnb-data
316 plotly-dash-best-practices_instructions
working-of-ipywidgets
317 ipywidgets
318 displaying-widgets-layouts-and-container-widgets
319 interactive-controls-combining-multiple-widgets-for-interactivity
320 custom-widgets-creating-and-registering-custom-widgets
321 extending-widget-functionality
streamlit
322 what-is-streamlit
323 demonstration-code-details
324 demonstration-executing-the-app
325 demonstration-data-visualization-on-streamlit
326 building-with-streamlit_instructions
module-wrap-up-and-assessment
327 summary-for-interactive-data-visualization
course-wrap-up-and-assessment
untitled-lesson
328 course-summary-of-python-for-data-visualization-and-analysis
329 project-sales-data-analysis-and-visualization-dashboard_instructions
Resources
module-1-resources
330 resources
module-2-resources
331 resources
module-3-resources
332 resources
module-4-resources
333 resources
Resolve the captcha to access the links!